Quantum quenches in the sine-Gordon model: A semiclassical approach
نویسندگان
چکیده
منابع مشابه
Semiclassical Scaling Functions of Sine–Gordon Model
We present an analytic study of the finite size effects in Sine–Gordon model, based on the semiclassical quantization of an appropriate kink background defined on a cylindrical geometry. The quasi–periodic kink is realized as an elliptic function with its real period related to the size of the system. The stability equation for the small quantum fluctuations around this classical background is ...
متن کاملSemiclassical Analysis of Defect Sine-gordon Theory
The classical sine-Gordon model is a two-dimensional integrable field theory, with particle like solutions the so-called solitons. Using its integra-bility one can define its quantum version without the process of canonical quantization. This bootstrap method uses the fundamental propterties of the model and its quantum features in order to restrict the structure of the scattering matrix as far...
متن کاملChiral Potts model as a discrete quantum sine-Gordon model
Helen Au-Yang Eigenvectors of the superintegrable chiral Potts model We show that the eigenspaces of eigenvalues (1−ωt)+ω(1− t) of the τ2(t) matrix of size N×N are degenerate. In the Q = 0 case, it has 2 independent eigenvectors, where r = L(N − 1)/N and L is chosen to be a multiple of N . They can be written in terms of the generators of r simple sl2 algebras, E±m and Hm (m = 1, · · · , r). Ne...
متن کاملThe Critical Properties of a Modulated Quantum Sine-Gordon Model
A new procedure of trial variational wave functional is proposed for investigating the mass renormailzation and the local structure of the ground state of a one-dimensional quantum sine-Gordon model with linear spatial modulation, whose ground state differs from that without modulation. The phase diagram obtained in parameters (αΛ−2, β2) plane shows that the vertical part of the boundary betwee...
متن کاملNoncommutative Sine-gordon Model Extremizing the Sine-gordon Action
As I briefly review, the sine-Gordon model may be obtained by dimensional and algebraic reduction from 2+2 dimensional self-dual U(2) Yang-Mills through a 2+1 dimensional integrable U(2) sigma model. I argue that the noncommutative (Moyal) deformation of this procedure should relax the algebraic reduction from U(2) → U(1) to U(2) → U(1)×U(1). The result are novel noncommutative sine-Gordon equa...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Physical Review E
سال: 2016
ISSN: 2470-0045,2470-0053
DOI: 10.1103/physreve.93.062101